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An algorithm is developed for the numerical solution of inhomogeneous linear two- 
point boundary value problems using the method of invariant imbedding. The method 
handles the case in which the standard Riccati equation of the imbedding method fails 
to have a solution over the entire interval of interest. Very general sets of boundary 
conditions are imposed. While the development is for scalar problems only, all steps 
generalize readily to the case of matrix equations. An efficient program implementing 
the algorithm has been written and several examples are solved by the method. Some 
of these are of such a nature that more standard integration schemes provide unsatis- 
factory results. 

1. INTR~DUOTION 

The method of invariant imbedding has been under investigation for over 
thirty years, originally as a device for analyzing and solving problems in transport 
theory and radiative transfer, and more recently as a technique which has much 
more far reaching implications. In particular, it has recently been studied as a 
method of numerically solving linear two-point boundary problems. The structure 
of the basic equations involved in the application of the method is such as to 
sometimes provide faster, more accurate, and more stable integration of such 
problems than is possible with many classical algorithms. 

However, the method itself suffers from the fact that one of the fundamental 
functions involved, a “reflection” function, satisfies a nonlinear Riccati-type 
equation. The solution to this equation may fail to exist over the interval of interest. 
A variety of attempts to avoid this difficulty have been made. Perhaps the most 
successful, in so far as homogeneous problems are concerned, is that based upon 
the use of certain recursive equations [ 1,2]. 

The question immediately arises as to whether a similar device is available for 
the treatment of inhomogeneous problems, and, if so, if the resulting numerical 
method possesses any possible advantages. In this paper we shall develop such an 
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algorithm and show by giving a number of numerical examples that it does indeed 
appear to be advantageous at times. It should be pointed out that many of the 
formulas obtained are similar to those found by Denman [3,4, 51. However, his 
approach might well be described as being “differential” in nature while ours is 
basically recursive. 

In Section 2 we investigate the “well-behaved” case of the inhomogeneous 
problem. By “well-behaved” we mean that the troublesome reflection function is 
completely defined by the Riccati equation mentioned earlier. The results here are 
by no means new [6,7]. However, it is valuable to go through this development 
briefly in order to realize the difficulties that can arise in the “ill-behaved” case, 
that in which the reflection function is not completely defined by its usual Riccati 
equation. The insight provided aids in finding a device which overcomes the 
problems. 

Section 3 is somewhat technical. It proves that there is always a finite set of 
Riccati equations which, together with the recursive equations, do indeed com- 
pletely define the troublesome reflection function. It is the existence of this set that 
makes our method viable. 

In Section 4 we derive the additional recursion formulas which, together with 
the standard differential equations of invariant imbedding, provide the desired 
algorithm. Section 5 calls attention to the fact that in the case of periodic problems 
all calculations are considerably simplified. We leave the derivations of several 
equations to the reader. 

Section 6 seems almost out of place in this paper, but it is rather difficult to find 
the results indicated written down in a convenient place. (Again, Denman [3] gives 
some of them, and a very through treatment, in a somewhat abstract setting, is 
provided by Golberg [8].) Historically, as was mentioned earlier, invariant imbed- 
ding was first extensively used in the study of transport phenomena. There the 
physics is such that the two-point boundary value problem arising has the value of 
one function assigned at one end of the system while the value of the second 
function is specified at the other end. Because of this background, most problems 
to which the method has been applied have had this feature. In Section 6 we point 
out that this structure is by no means necessary. We can examine problems in 
which the value of the same function is specified at both end points; we can also 
study initial value problems. Thus results of this paper, as well as those of many 
others, are far more widely applicable than is often supposed to be the case. 

Numerical results are presented in Section 7, and comparisons are made with 
other methods of calculation. Two of the examples investigated are of the “unusual” 
sort mentioned in Section 6. Section 8 summarizes the results of the paper and 
suggests further directions for research. 

In [9] it is concluded that the Riccati approach (basically equivalent to the 
invariant imbedding method) is often inferior to the very classical superposition 
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method simply because the solutions to the Riccati equations become very large, 
eventually exceeding the capacity of the computer. Several examples are given in 
[9] which exhibit this property. Whether the solutions become large because the 
problem under study is truly “ill-behaved” or whether the functions involved 
become large despite the fact that the problem is actually “well-behaved” is not 
relevant. The methods of this paper are applicable in either situation. The 
conclusion reached in [9] is less valid than indicated there. While it is unwise to 
claim that any numerical algorithm is always superior to another, the technique we 
describe certainly extends the usefulness of the imbedding method greatly. 

Throughout this section we have spoken of “functions.” For ease of presentation 
we shall confine our study entirely to the scalar case. Extension to the case of 
matrix equations is fairly obvious (although frequently tedious). The possibility 
of using similar methods on more complicated functional equations also suggests 
itself. 

2. AN ALGORITHM FOR THE WELL-BEHAVED CASE 

We consider the two-point boundary value problem 

wz) 44 = &I 44 + B(z) 44 + s+(z), (2.la) 

-(4@ u(z) = C(z) 44 + W) $4 + S-(z), (2.lb) 

44 = %, U(Y) = h3 x<z<y. (2.lc) 

Here all functions are scalars, A(z), B(z),..., S+(z), and S(z) are continuous on 
x < z Q y, and U, and v, are given constants. Moreover, we suppose that all of 
the standard reflection and transmission functions of invariant imbedding exist and 
satisfy their respective differential equations over the entire interval x’ < z < y for 
any x’, x < x’ < y. For convenience we list one set of these differential equations 
[IO]: 

(Wz) &,(x’, 4 = B(z) + MA(z) + Al &W, 4 + a4 &Yx’, 3, 
Rr(x', x') = 0; (2.2a) 

Wz) TAX’, 4 = P(z) + C(z) Mx’, 31 TAX’, 4, 
T7(x’, x’) = 1; 

(2.2b) 

(Wz) Tdx’, 4 = M(z) + C(z) &(x’, 41 Tdx’, 4, 
T,(x', x') = 1; 

(2.2c) 

(W) W’, 4 = C(z) TN, 4 TAX’, 3, 
R&x', x') = 0, 

xQx’<z<y. 
(2.2d) 
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It will be observed that only the Riccati equation (2.2a) can be a source of 
difficulty; all the other equations are linear equations sequentially dependent upon 
the solution to (2.2a). Our hypothesis of good behavior implies that this Riccati 
equation is soluble for R,(x’, z) for all x < x’ < z < y. 

The set of equations (2.2) completely defines the reflection and transmission 
functions. Another set (see [Ill) which is sometimes useful allows integration in 
the reverse direction, i.e., defines the quantities R,(z, v’), T,(z, v’), etc. One may 
think of these as “backwards differential equations.” 

In the homogeneous case, S+(z) = S(z) = 0, the basic functional relationship 
which makes the imbedding approach so useful is (see, e.g., [12]) 

u(z) = &J-,(x, 4 + +I wx, 4, (2.3a) 

43 = 44 &(-G Y> + &IT&, v>. (2.3b) 

To take account of the S-functions in the more general inhomogeneous case we 
amend these relationships and attempt to find functions g and h such that 

u(z) = %TdX, 4 + 44 &k z> + &, z), (2.4a) 

48 = 44 M-G VI + %TT(Z, v> + 45 Y). (2.4b) 

Obviously this pair of equations can be solved for u(z) and u(z). Since the R and T 
functions are defined by (2.2), our problem is solved completely if the functions g 
and h can be found. 

Let us differentiate (2.4a) with respect to z. Using a somewhat condensed notation 
we get 

u’ = u,T$’ + v’Rr + vRr’ + g’. (2.5) 

After use of Eqs. (2.1) and considerable manipulation, we have 

u,(T,’ - CT,R, - AT,) + v(-CR,2 - DR, + R,’ - AR,. - B) 
= -g’ -I- CgR, $ S-R, f Ag f S. (2.6) 

The coefficients of u, and of v are identically zero by virtue of Eqs. (2.2). Thus we 
must require of g that it satisfies 

VP3 g(x, z) = Mz) + C(z) R,(x, 41&, 4 + fW &(x, 4 + s+(z). (2.7) 

From Eq. (2.4a) we obtain u(x) = u, + g(x, x) and so 

g(x, x) = 0. (2.7a) 

That Eqs. (2.7,2.7a) have a unique solution follows from the linearity and the 
properties of the coefficient functions involved. 
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Equation (2.4b) may now be treated similarly to obtain a differential equation 
satisfied by h(z, y). Since we have listed only the equations for the R and T functions 
with arguments (x’, z), it may be a bit more consistent to find an expression for 
h(x’, z). To obtain such an expression we rewrite (2.4b) in the form 

0(x’) = u(x’) Ra(x’, z) + v(z) T,(x’, z) + h(x’, z) w3) 

and differentiate with respect to z: 

0 = u(x’) R1’(x’, z) + v’(z) T,(x’, z) + v(z) T,‘(x’, z) + h’(x’, z). (2.9) 

Further use of Eqs. (2.1) and considerable manipulation lead eventually to 

(4dz) w, z) = [S-(z) + C(z) gw, z)l TAX’, 4 (2.10) 
and 

h(x’, x’) = 0. (2.1Oa) 

We observe that the equation for h involves initial argument x’ where x’ is quite 
arbitrary, x < x’ < z < y. The equation for g involves the initial argument x. 
A little thought shows that (2.7) may also be stated for g(x’, z). It is this ability to 
write equations involving functions with relatively arbitrary arguments which 
makes the imbedding method useful. 

We have now obtained a complete set of equations for all the functions involved 
in the determination of u(z) and v(z) (Eq. (2.4)). Our assumption that this is the 
well-behaved case insures that all these equations may be integrated. As with the R 
and T functions, one can derive differential equations for g and h with arguments 
(z, y’). It is important to note that none of the R, T, g, or h functions is in any way 
dependent upon the boundary conditions (2.1~). 

3. THE ILL-BEHAVED CASE. A THEORETICAL ANALYSIS 

As mentioned in the Introduction, we shall refer to the Problem (2.1) as “ill- 
behaved” when the Riccati equation for R&x’, z) fails to have a solution over the 
entire interval x < x’ < z < y. Clearly, when this happens, none of the equations 
for the other vital functions is meaningful and the method outlined in Section 2 
ceases to be valid. However, it is known that the function R, can be extended by 
means of the recursive equations, as can RI and the T functions (see [l, 21 and 
Eqs. 4.2 of this paper). It seems reasonable to suppose that similar recursion 
formulas should be obtainable for the functions g and h. 

There is first a theoretical question to be answered. Suppose that the function 
R,(x, z), obtained by integration of (2.2a), has a singular point at & < y. One may 
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restart the integration with R,(c,-, &-) = 0, &- < 5, and continue until another 
singular point & -=c y is encountered. Again one may restart with Rr(c2-, cz-) = 0, 
<,- < C2, and continue the process to &, etc. It is completely possible that the 
points L , G, 5, ,..., have a point of accumulation z* < y. If this should happen 
the scheme must stop and there is no hope, even with the recursive equations, of 
proceeding beyond this point of accumulation. In this event the effort to use the 
invariant imbedding analysis would be doomed to failure. One might argue that in 
such a case one could turn to the “backward equations,” those whose functions 
have arguments (z, y’) and work to the left from y. But the same phenomenon 
might occur, and if the accumulation point were to the right of z* there would be 
an interval of z points inaccessible to the method. 

We shall now prove that such a point of accumulation does not exist. To do so, 
we must recall to mind what the function R,(z’, z”) reah’y is. It is the value of u(z”), 
the solution of (2.la, b) with S- = S- = 0, when these equations are subject to 
the conditions u(z’) = 0 and v(z”) = 1. It is always possible that this problem has 
no solution, and this is reflected in the fact that R,(z’, z”) fails to exist. This can 
only occur if the problem (2.la, b) with S+ = S- = 0, u(z’) = 0 and v(z’) = 1 has 
a zero of ZI at z”. This can be seen as a relatively easy consequence of the fundamen- 
tal existence and uniqueness theorem for initial value problems. Thus our analysis 
is thrown back to the study of initial value problems, a much more comfortable 
domain. 

It is important at this point not to try to dispense with the whole question with 
a simple reference to this fundamental theorem. A little thought shows that if the 
R, function does cease to exist at a point & and one starts a new integration for 
J?+.(&-, z), then he is looking at a completely new problem. Thus the study must 
involve a sequence of initial value problems, not just one. We first prove a fun- 
damental lemma. 

LEMMA. Consider the problem 

24’ = A(z) 24 + B(z) v, (3.la) 

-v’ = C(z) I.4 + D(z) v, (3.lb) 

where A, B,..., are continuous in the interval x < z ,( y. Let z’ be in this interval, 
z’ < y. Then the problem (3.la, b) subject to the initial conditions 

u(z’) = 0, v(z’) = 1, (3.lc) 

has no zeros of v in the interval z’ < z < z” where zn - z’ = 6, and 6 is a number 
independent of z’. 
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Remark. It is important to understand the meaning of the lemma. It really says 
that there is a constant 6 with the property that the initial value problem (3.1) 
cannot have a zero of u in the interval (z’, z’ + 6) regardless of how we choose z’. 
Thus the corresponding R, problem over this interval can be resolved by simply 
solving its Riccati equation. Therefore, the accumulation point z* alluded to 
earlier in this section cannot exist. 

Proofofthe lemma. Denote by A, the maximum value of 1 A(z)] in x < z < y, 
with similar meanings for B, , etc. Suppose there is no such 6. Then we can choose 
z’, x < z’ < y such that the first zero of v is arbitrarily close to z’. Call this zero 
I, z’ < 2. 

Let V(Z) achieve its maximum value in [z’, Z] at 1; call this value 6. By the mean 
value theorem, 

u’(.z) = (0 - u(i))/(2 - a) = ep - 2) < 0, 

where 2 < Z < f. 
From Equation (3.1 b) 

(3.2) 

Thus at the point Z 

S/(2 - z’) < z;/(Z - 2) = j u’(Z)/ f COG + Do6 (3.4) 

where zi is the maximum value of 1 u 1 in z’ < z < f. 
Now turn to Eq. (3.la) subject to u(z’) = 0. It is readily solved in terms of v: 

u(z) = S,” B(S) u(s) exp [-jZI I dt] ds. (3.5) 

Thus in the interval z’ < z < 1, 

max 1 u(z)1 = zi < (2 - z’) B&T(~-~‘)~~ . (3.6) 

From Eq. (3.4), 

S/(2 - z’) < C&i - z’) BoBe(i-z’)A~ + D& (3.7) 

However, 8 > 0. Therefore, 

l/(2 - z’) < C,(y - x) BOe(~-E)A~ + D, . (3.8) 

The right side of Eq. (3.8) is completely independent of z’ and 1. But we assumed 
that z’ was chosen so that f was arbitrarily close to it, thus making the left side of 
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(3.8) arbitrarily large. This is an obvious contradiction and the Lemma is proved. 
It is interesting to note that the right side of (3.8) provides a bound on 6. 

THEOREM. Let the problem (3.1) subject to the conditions u(x) = 0, o(y) = 1 be 
soluble. Then there exist a finite number ofpoints, zi , x = z, < z, < *** < z, = y, 
such that the functions R&c, zJ, i = 1, 2 ,.,., n and the functions R& , y), i = n - 1, 
n - 2,..., 0 all exist and such that the functions R,(z, , zi+J, i = 0, l,..., n - 1 all 
exist and can be found by integrating the Riccati equations for &(z, , z) from zi 
to zi+1 . 

Proof. We begin by calling attention to the fact that no claim is made that the 
R&c, ZJ (nor R,.(z# , y)) can be obtained by solving Riccati equations. To see that 
these functions exist, consider the initial value problem defined by (3.1) and 
U(X) = 0, V(X) = 1. The solution of this problem certainly exists over [x, y]. 
Moreover, the function v can have only a finite number of zeroes on this interval; 
callthemx<t,<t,<*.* < tk < y. At any other point z’ in the interval the two- 
point boundary value problem with U(X) = 0, u(z’) = 1 must then be soluble. 
Hence the function R,(x, z’) exists. Similar reasoning shows that R,(z”, y) exists 
for any Z” not in any exceptional finite set x < w, < w2 < a** < wj < y. 

Now we need only choose a set of points zi such that the distance from zi to z~+~ 
does not exceed 6 and such that no Zi coincides with a t or w point. Clearly, this 
can be done. The Lemma then asserts that the functions R, have the requisite 
properties. 

Without stating a formal corollary we observe that all of the functions 
&(x, 4, Mzi , zi+A T,(zi, Y>, T& , G+~), etc., are obtainable either through 
the integration of differential equations or through the use of the recursive equa- 
tions. 

4. THE BASIC RECUIWON FORMULAS 

We are now in a position to derive the complete set of recursion formulas that 
constitute the computing algorithm we are seeking. In the light of the previous 
section we may assume that the various R and T functions are known through 
integration over any interval [zd , zi+J, i = 0, 1,2,..., n - 1. By virtue of Eqs. (2.7) 
and (2.10) the g and h functions may then also be assumed known over these 
intervals. For the time being we suppose that we are interested in the values of u 
and o at a point z which is itself a z, point. (Recall from the work of the previous 
section that only a finite number of z points cannot be zi points.) Later, even this 
requirement will be dropped. 
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Using Eqs. (2.4), but evaluating all functions at more convenient points, we 
obtain 

44 = t+o> Tz(z, 3 23 + 4%) R,(zo 9 Zi) T&i 3 ZJ 
+ KG,, zi> Wzi , ZJ + g(zoy zi)l[1 - W%, 4 Wi , zP, (4.W 

44 = Wn) T&i , 4 + 4~0) R&i , zn) Tdzo , d 
+ Rz(zi , 4 ho , zi) + @i , zdl[l - &(zt, , 4 R&i , z,P. @lb) 

Here we know that all functions exist except perhaps the g and h functions. While 
we could discuss their existence now, we prefer to defer the matter briefly. That 
the expression 1 - R,.(z, , zi) Rt(zi , z,) # 0 is shown in [2]. Clearly to obtain 
u(zJ and u(zJ we need only find the quantities R,(z,, , zi), Rl(zi , z,,), T,.(zi , z,), 
Tr(z,, , zi), g(zO , zJ, and h(z, , z,J. The first four functions may be found by adroit 
use of the classical recursive equations. We list these below for reference (see 
U,2,31). 

The choice 01~ = z0 , 01~ = zkel , a3 = zk yields 

(4.2b) 

(4.2d) 

&(zo 9 zk) = 
T&L1 9 zk) T&k--l 7 zk> R&o 7 zk-~) + R,(zk-, z j 

1 - R&o , %-I) &CL, 7 zk) 

(4 3a) 
TIC, * 

T&o , %-I) T&k--l 3 zk) 

TT(zo ’ “’ = 1 - &(Z, , zk-3 Rz(z,-, , zk) ’ 

-Go > 4 = ‘“‘io ‘~$fT’; ~~j$z~~~~;k; “’ + R1(~k-l , .$), (4.3c) 
T 0, k 

(4.3b) 

T&O 3 zk) = 
T&o 3 zk-3 TdZk-, 3 Zk) 

1 - R&o > %-I) Rdzk--l 3 zk) ’ 
(4.3d) 

for k = 2, 3,..., IZ. This set of coupled first-order difference equations may now be 
iterated to obtain R,(zo , ZJ and T,(z, , zJ. 

Next, the selection calm = zi , 01~ = z&l , 01~ = zk produces 
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together with three other equations resembling (4.3b, c, d) except that z,, is replaced 
by zi . These hold for k = i + 2, i + 3 ,..., IZ and may be solved iteratively to yield 
the desired values TT(zi , z,) and &(z, , z,J. 

We still need equations for g(zO , z,.) and h(zi , z,J whose existence we continue 
to assume. Appropriate changes of indices in Eqs. (4.1) give 

U(Zi-1) = WJ ~&I , zi- 3 + 4%) wzo , Z&l) T&i-l , zn) 
+ R&o 9 G-1) &-1 9 zn> + &o > zi-,)l[l - wo 9 zi-1) ML, 9 zn>l-l 

(4.5a) 
and also 

Now we recall that h and g are supposed to be independent of the boundary condi- 
tions imposed on the problem (2.1). We may therefore choose u(z,,) = 0 and 
u(z,J = 0. Choosing i = IZ in Eqs. (4.5a), (4.la), and (4.5b) yields 

u(z,J = [R,(zo , z,-3 h(z,-1 , 4 + ho , z,-,)I[1 - Wo 7 G-I) Rdzn-I 9 ~n>l-~, 

(4.6a) 
ehJ = g(zo > zn), (4.6b) 
u(zn) = u(.Gl-1) TL(Z,-1 , zn) + &n-1 9 zn). (4.6~) 

An easy manipulation then gives 

g(zo ’ zn) = 1 - RT(zo , z,J Rz(z,-, , z,) [g(zo , z,-3 + R,(z, , G-J h(z,-, , z,)l 

+ &7l-1 , z,). (4.7) 

Finally we recognize that the index n was chosen only as a matter of notational 
convenience. The point z,, in Eq. (4.7) can be replaced by any z, point. Hence, 

+ &k-l 3 6) (4.8) 

for k = 2, 3,..., n. The structure of this simple difference equation shows that 
g(zo , zt) does indeed exist. 
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We leave the derivation of the equation for h to the reader: 

+ wzi , Zk-3, (4.9) 
for k = i + 2, i + 3,..., n. It should be noted that Eq. (4.8) must be solved before 
(4.9) since the latter equation depends upon g(zi , z&. 

We have now derived equations for all the functions required to calculate u(zt> 
and u(z*). Moreover, the recursive nature of the formulas is most appropriate for 
machine calculation. In practice, it is convenient to have still another set of equa- 
tions. Those we have derived might be called “forward recursion formulas.” Just 
as in the case with the differential equations of the method (see Section 2), it is 
possible to derive “backwards recursion formulas.” We omit the details, but 
allude to the use of these in the description of our numerical algorithm (see 
Section 7). 

Finally, we must dispense with the case in which the values of u and v are desired 
at a point z which cannot be a zt point. Such a z must lie between two zt points, say 
zj < z < z~+~ . The method derived in this section may be used to find the value of 
u at zj and the value of v at zj+l . Now we may consider a new problem simply over 
the interval [zj , zj+l]. But this interval is such that we are in the well-behaved 
case, completely resolved in Section 2. Thus U(Z) and v(z) may be readily calculated. 

5. PEXI~DIC PROBLEMS 

It is known (see [l 1, 131) that when the coefficients in Eq. (3.1) are periodic with 
the same period the invariant imbedding method is especially successful in pro- 
viding numerical results. It is reasonable to ask if similar simplifications occur in 
the inhomogeneous case, Eq. (2.1), when Sf and S- as well as A, B, etc., are all 
periodic with the same period. We address this problem briefly, leaving many of 
the details to the reader. 

We first note that a closed form solution for (4.8) is obtainable even without any 
assumptions of periodicity. We chose not to examine this solution in the previous 
section since it is not particularly interesting in the general case. In the periodic 
problem it is valuable. We sketch the derivation. 

First, define 
G = &o ,zzJ - &k-l ,4 (5.1) 

so that (4.8) becomes 

Gk = ~&+I 9 4 
1 - &(zo , %-3 &hl 3 Zk) {G--l + gh-2 3 G-II 

+ &(zo , %--I) m,-I , zdl. (5.2) 
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But Eq. (4.3b) allows this to be put in the form 

Gk G-1 LdZk--2 3 G-3 + R&o 9 Zk-1) h(Za-l,Z*)* 

T&l, Zk) - T&o 3 Zk-._3 = T&o 9 Zk-3 Tdzo , Z&l) 
(5 3) . 

Summing from k = 2 to i we obtain 

Gf 
Tdzo 3 Zf) 

= &o 3 Zf) - &f-l 3 Zf) 
Tdzo , Zf) 

Thus, with no assumption of periodicity, 

AZ0 , 23 = Tz(zo 9 23 x ’ 
zk+3 1 * (5.4) 

Now turning to the periodic case we make the assumption that the z, points may 
be so chosen that zk - zk-I = P, where P is the period and k = 1,2,..., n. Then 
(see [13]) for all such k define 

where the p’s and T’S are constants. Thus, for example, 

wzo , 4 = v,&(zo 3 zre-3 
1 - p&(zo , zd 

+ p+ , 

Tdzo 3 z3 = 
TJdZo , Zk-ll 

1 - P&(ZO 3 ~-3 ’ 

(5.6a) 

(5.6b) 

result immediately from Eq. (4.3). These recursion formulas are especially fast and 
stable in computation. The derivation just given is considerably simpler than the 
original [13]. 

As yet, we have made no use of the assumed periodicity of the S functions. Let 
us turn to the basic defining equation for the g function over the interval [zkMI , ZJ 
(Eq. (2.7)). We write it in the form 

= [A(z,-1 + w) + C(z,-1 + 4 R&-l 5 Zk-1 + 41 &c-l , Zk-1 + 4 
+ S-(z,, + w) R&,-l , zx-I + w) + S+(z/c, + 4 

= Mzo + w) + C(zo + w) R&o , zo + ~13 &w, ZT+I + 4 
+ S-(z,, + w) R,(z, , zo + w) + S+(zo + 4. (5.7) 
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Here we have made strong use of the periodicity. Now, if we select k = 1 we find 
that g(zO , z,, + w) and g(zkvl , zyel + w), as functions of w, both satisfy the same 
equation. Moreover, they both vanish at w = 0. Therefore, they are identical, and 
so 

&bl 3 %I = gc% , 3) = 2, (5.8) 

where 2 is a constant. Similarly, 

Finally, from (5.4), 

h(Z&1 , ZJ = h(z, ) 21) = R. (5.9) 

dzo 9 4 = Ed% 3 4 1 1 - (5.10) 

A similar closed-form expression for h(zi , z,J may be found. Computations of 
periodic problems have been made using these simplified equations and have been 
compared with calculations which used the results of Section 4 in a straightforward 
manner. Very considerable improvements in speed and accuracy are obtained 
when the methods of this section are utilized. 

6. OTHER BOUNDARY CONDITIONS 

Up to this point we have been using the standard boundary conditions found in 
most invariant imbedding treatments, i.e., U(X) and v(y) specified. As noted in the 
Introduction, these conditions are imposed largely as a matter of historical tradi- 
tion. Actually a wide variety of boundary value problems can be handled. 

Consider, for example, the case in which u is given at both x and y. We rewrite 
Eq. (2.4) so as to avoid any notational bias concerning which quantities are known 
and which are unknown. 

44 = 44 Tdx, 4 + 44 Mx, 4 + g(x, 3, 
43 = 44 Rdz, Y) + 4~) Trtz, Y) + &, Y). 

If in (6.la) we set z = y and then solve for v(y) we find 

(6.la) 
(6.lb) 

4~) = MY> - 4x1 TL(x, Y) - gtx, ~W&tx, Y>. (6.2) 

Provided R,(x, y) is not zero (a matter into which we shall not delve since this 
section is purely expository) we now have u(y) given in terms of quantities which 
may be presumed known. Thus the problem is reduced to the standard one with 
u(x) and v(y) prescribed. 
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It is obvious that cases in which u and a are both given at x (or at v), in which v 
is specmed at both x and y, and in which various linear combinations of u and v 
are given at the two ends may be similarly treated. The interested reader is referred 
to [8] for a more thorough treatment. We have chosen to discuss the case in which 
u is prescribed at both x and y since two of our numerical examples are in that 
category. 

7. SOME NUMERICAL EXAMPLES 

In this section we shall illustrate the use of the algorithm we have derived by 
applying it to four examples. No direct effort has been made to compute exactly the 
points referred to in Section 3 as zi . We simply integrate the R, equation forward 
until either we experience numerical difficulty or sense that the integrator is 
working too hard. (We measure this by counting the number of function evaluations 
the integrator requires.) A zi point is then chosen as a point at which R,. can still be 
computed to within the imposed accuracy criteria or the maximum function count 
is reached. Integration then automatically begins again with initial data at zi . 

Using the equations we have developed our computational algorithm proceeds 
as follows. Suppose we want the solution to the problem (2.1) at the point z*. 
Assume that z* is not an exceptional point of the kind discussed in the last para- 
graph of Section 4. Then z* may be included in the set of zi points computed above. 
If it is not we simply augment that set by z* and reindex. We determine the values 
R,(z~-~ , 4, Tlh , zA &(.G-, , 4, T,(z,-~ , 4, g(zi-l ,4 and &-l , d for 
i = 1, 2,..., n, by integrating the differential equations (2.2a-d), (2.7), and (2.9). 
The recursion formulas (4.2a-d) and (4.8) are then used to find the quantities 
R,(x, z*), T&V, z*) and g(x, z*). Equations of the type (4.4) together with (4.8) and 
(4.9) yield R&(z*, JJ), T,.(z*, v), and h(z*, JJ). The solution to (2.1) is then obtained 
by solving the trivial linear algebraic system (2.4). 

The reader will note that while conceptually it is somewhat easier to t%rd the zi 
points (other than z*) before implementing the algorithm, in practice this can be 
done during the integration of the differential equations, thus economizing on 
computing time. 

When the solution of the problem (2.1) is desired at several points z*, the above 
approach is rather wasteful. The values R,(z*, JJ), T,.(z*, v), and h(z*, v) can be 
calculated more easily by employing “backward recursion fomulas” of the kind 
mentioned at the end of Section 4. We do not pursue this and other nuances of 
the method here. 

In our examples all differential equations were integrated using a fourth-order 
Runge-Kutta-Fehlberg scheme designed to estimate the local error and to control 
the step size to insure user input accuracy requirements [14]. We used an absolute 
and relative error of IO-6 per unit step in the independent variable and a maximum 
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function count of 120. All calculations were done on an IBM 360/67 in extended 
precision arithmetic. (Some early problems were run in single precision and satis- 
factory results, compatible with the arithmetic, were obtained.) 

EXAMPLE 1. The lirst example to be given was one described in [15] as presen- 
ting some difficulties when various versions of invariant imbedding, different from 
the one we have developed, were used for its solution. It is simply 

u’(z) = u(z) + 1.0 
-u’(z) = -u(z) 

u(0) = 0, u(20) = 1.0. 

The analytical solution is readily found to be 

U(Z) = 2sech(20) sinh(z); u(z) = 2sech(20) cash(z) 

For this system the I?,. equation is 

It,‘= LO-RR,2 

(7.la) 
(7.lb) 
(7.lc) 

1.0. (7.2) 

(7.3) 

which has a solution for all z. Therefore, the example under consideration is 
actually a well-behaved case. Nevertheless, it seems valuable to verify that the 
method is effective in this simpler situation. This problem was solved by use of our 
general program and the solution was found accurate to five significant digits. In 
particular, those values of z which produced difficulties in [15] were handled with 
ease. It might be added that computations in well-behaved cases ordinarily proceed 
very rapidly 

EXAMPLE 2. This example was also chosen to be a very easy one: 

y” + y(z) = z, 
y(0) = l.O,y’(lO.O) = cos(lO.0) - sin(lO.O) + 1.0. 

This is equivalent to 
u’(z) = u(z), 

-u’(z) = u(z) - z, 
u(O) = 1.0, ~(10.0) = cos(lO.0) - sin(lO.O) + 1.0. 

Again the analytical solution may be found 

u(z) = sin(z) + cos(z) + z, U(Z) = cos(z) - sin(z) + 1.0. 

(7.4a) 
(7.4b) 

(7.5a) 
(7.5b) 
(7.5c) 

(7.6) 
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The R, equation here is 
R,' = 1.0 + R,*. (7.7) 

Clearly this equation cannot be integrated over any interval of length greater than 
or equal to 42. Hence the example is in the ill-behaved category and provides a 
genuine test of our algorithm and program since there are several “break points” 
(points at which the integration is automatically started over) on the interval 
0 < z < 10.0. Table 1 gives the results of our calculations as well as the absolute 
errors in the computed quantities. The results are compatible with the accuracy 
criteria used. 

TABLE I 

Z 

computed computed 
44 44 

error 
u(z) 

error 
u(z) 

0.0 1.OOOOOO0 1.9999967 0.0 3.3(-6) 
2.0 2.4931471 -3.2544501(-l) 3.5(-6) 7.5(-6) 
4.0 2.5895545 1.1031621 5.9(-7) 3.2(-6) 
6.0 6.8075711 2.2395829 2.3(-6) 2.8(-6) 
8.0 8.8438561 -1.3485984 2.1(-6) 1.6(-6) 

10.0 8.6169074 7.0495446 4.9(-6) 0.0 

EXAMPLE 3. We now consider an equation which arises in a practical setting. 
It describes the stress distribution in a spherical membrane with normal and 
tangential loads [ 161. 

y” + [3cot(z) + 2tan(z)] y’ + 0.7~4~) = 0, 
~(30") = O,y(60") = 5.0. 

(7.8a) 
(7.8b) 

Previous numerical studies have been made of the solution, many of them rather 
unsuccessfully. The value of y actually rises from zero to about 283 as z changes 
from 30” to 30.7”. The matter is further complicated by the fact that in the physical 
application the value of y’ is also of interest. 

The reader will note that the problem is homogeneous and hence does not really 
fit the spirit of this paper. Of course, the algorithm we have derived can be used 
when S+ = S = 0. We actually carried out this calculation with good results. 
However, in order to show the effectiveness of our full algorithm we converted the 
given problem into an inhomogeneous one by writing 

y(z) = u(z) - 1.0 (7.9) 
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and using the system 
u’(z) = u(z), (7.1Oa) 

--u’(z) = O.~U(Z) + [3cot(z) + 2tan(z)] U(Z) - 0.7, (7.1Ob) 
2430") = 1.0, ~(60”) = 6.0. (7.1Oc) 

The R, equation for this problem is very badly behaved and there were a total 
of 57 break points in the integration, more or less equally spaced. Table 2 provides 
our results. They are consistent to six significant digits with other methods (see, 
e.g., WI). 

TABLE 2 

Z 

Computed 

44 4z) 

30.0 1.ooooO 1896.44 

40.0 90.07069 -12.1522 

50.0 22.26790 -3.13099 

60.0 6.OOOOO -0.693964 

EXAMPLE 4. As our final example we choose an equation for which standard 
superposition algorithms are quite inadequate. The equation is 

y” - (1 + z”) y(z) = 0, (7.11a) 
y(0) = 1.0, y(10.2) = 0. (7.11b) 

This was converted into the form 

u’(z) = v(z), (7.12a) 
-v’(z) = -(l.O + 22) u(z), (7.12b) 

u(0) = 1.0, u(10.2) = 0. (7.12~) 

Equation (7.12) is admittedly homogeneous. However, we feel that the effectiveness 
of our method on inhomogeneous problems has been demonstrated by the Crst 
three examples and that the interest here lies in the ability of our algorithm to 
handle problems with very badly behaved solutions. 

Again the R, equation produces difficulty, resulting in a total of eight break 
points in the calculation. Table 3 gives the results. There we also present results 
obtained by S. Pruess using a method of approximating coefficients [17]. (See also 
results by M. R. Osborne [18].) 
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TABLE 3 

z 

Imbedding Pruess 

u V u V 

0.0 l.ooo -1.128 1.000 -1.128 
2.0 3.456(-2) -8.358(-2) 3.456(-2) -8.358(-2) 
4.0 4.595(-5) -1.946(-4) 4.596(-5) -1.947(-4) 
6.0 1.412(-9) -8.700(-9) 1.413(-9) -8.707(-9) 
8.0 8.846(-16) -7.186(-15) 8.863(-16) -7.199(-15) 

10.0 1.061(-23) -1.109(-22) 1.064(-23) -1.112(-22) 
10.2 0.0 -2.883(-23) 0.0 -2.887(-23) 

8. SUMMARY AND FINAL REMARKS 

In this paper we have developed an algorithm to solve inhomogeneous linear 
differential equations by the method of invariant imbedding for cases in which the 
solution to the equation for the reflection function is ill-behaved. For purposes of 
ease of exposition we have confined our investigation to the case of scalar equations. 
However, the methods generalize completely to matrix systems. The algorithm has 
been tested numerically on numerous scalar problems. Four are given as examples. 
The scheme seems to provide much greater accuracy in some cases than more 
standard methods, although it can be somewhat costly in time, especially when 
there are many break points. 

The use of the recursive equations in generating the reflection and transmission 
functions appears quite powerful. In homogeneous scalar problems these equations 
may often be avoided by the simple device of replacing the reflection function by 
its reciprocal in the vicinity of a singularity. An analagous trick is probably 
available for the inhomogeneous problem, but it seems quite likely that for matrix 
problems an approach analogous to ours may be superior numerically to any 
based on the analog of taking reciprocals of reflection functions. It is hoped that 
this whole area may be investigated. 

One basic difficulty with the invariant imbedding procedure is that it depends 
strongly on the linearity of the system under study. (It is true, of course, that 
imbedding equations have been derived for nonlinear problems, but they have 
not been found to be of any great numerical value.) However, one way of 
approaching nonlinear problems is by the use of skillfully devised sequences of 
linear problems. The algorithm we have constructed is of potential great use here 
since the solution of the approximating linear problem at the n-th stage usually 
contributes to the inhomogeneous term of the approximating problem at the 
(n + 1) stage. Our method can easily take advantage of this phenomenon. 
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In conclusion, we might remark that the continuity condition on the various 
functions A(z), B(z), etc., is considerably stronger than necessary. One can easily 
allow piecewise continuity by simply making small modifications in Section 3. It is 
likely that even this restriction can be significantly relaxed. 

REFERENCB 

1. R. M. REDHEFFER, J. Math. Phys. 41 (1962), 1. 
2. R. C. ALLEN, JR. AND G. M. WING, J. Math. Anal. Appl. 42 (1973), 397. 
3. E. DENMAN, Invariant imbedding and linear systems, in “Invariant Imbedding,” Springer- 

Verlag, Berlin-Heidelberg-New York, 1971. 
4. E. DENMAN, Inter. J. Numer. Meth. Eng. 4 (1972), 587. 
5. E. DENMAN, “Coupled Modes in Plasma, Elastic Media, and Parametric Amplifiers,” 

American Elsevier, New York, 1971. 
6. G. M. WING, J. Math. And. Appl. 13 (1966), 361. 
7. P. NELSON AND M. Scot, J. Math. And. Appl. 37 (1972), 501. 
8. M. GOLBERG, J. Math. Anal. Appl. 33 (1971), 518. 
9. B. D. TAPLEY AND W. E. WILLIAMSON, J. Amer. Inst. Aeron. Astron. 10 (1972), 1154. 

10. W. T. REID, J. Math. Mech. 8 (1959), 221. 
11. R. C. ALLEN, JR., J. W. BURGMEIER, P. MUNDORFF, AND G. M. WING, J. Math. And. Appl. 

37 (1972), 725. 
12. R. C. ALLEN, JR., J. Math. Anal. Appl. 30 (1970), 48. 
13. R. C. ALLEN JR. AND G. M. WING, J. Math. Anal. Appl. 29 (1970), 141. 
14. L. SHAMPINE AND R. C. ALLEN, JR., “Numerical Computing: An Introduction,” Saunders, 

Philadelphia, Penn., 1973. 
15. P. NELSON, J. Computational Phys. 10 (1972), 374. 
16. A. L. ROARK AND L. F. SUPINE, On the numerical solution of a linear two-point boundary 

value problem, Sandia Laboratories Report SC-TM-67-588, September, 1967. 
17. S. Fku~ss, Math. Comput. 27 (1973), 551. 
18. M. R. OSBORNE, J. Math. Anal. Appl. 27 (1969), 417. 


